Поиск

7333 тов.
Вид:
  • Выбрано: 1
    Применение
    Загрузка...
  • Выбрано: 0
    Название
    Загрузка...
  • Выбрано: 0
    Компания
    Загрузка...
  • Выбрано: 0
    Производство
    Загрузка...
  • Выбрано: 0
    Дополнительно
    Загрузка...
Все фильтры
  • Применение
    Загрузка...
  • 972
    Название
    Загрузка...
  • 324
    Компания
    Загрузка...
  • 129
    Производство
    Загрузка...
  • 174
    Дополнительно
    Загрузка...
Вид:
7333 тов.
Инфракрасный (ИК) лазерный модуль KLM-H980-120-5 980нм, 120мВт
Инфракрасный (ИК) лазерный модуль KLM-H980-120-5 980нм, 120мВт
от 9 108 ₽
Серия лазерных модулей KLM-H980 представляет собой надежное компактное устройство, генерирующее когерентное излучение в инфракрасном (ИК) спектральном диапазоне (980 нм) и мощностью излучения 120 мВт. Лазерный модуль изготавливается на основе высококачественных лазерных диодов ведущих мировых производителей, поэтому обладают узким фокусированным пучком излучения, обеспечивая низкую степень рассеивания и лучшие спектральные характеристики. Благодаря низкому потреблению энергии и рабочему току, они могут работать от компактных автономных источников питания длительное время. Поставляются в промышленном исполнении – два вывода питания длиной 100 мм. Являются оптимальным выбором для построения систем контроля и автоматизации, а также для научных и медицинских целей, где требуется когерентное излучение высокой стабильности. Технические характеристики Параметр Значение Выходная оптическая мощность, мВт 120 Длина волны излучения, нм 980 Напряжение питания, В 5 (по умолчанию) / 3 (под заказ) Апертурный диаметр пучка, мм 5 Расходимость, мрад 1 Форма пятна эллиптическая 1:2.5 Оптимальная рабочая дистанция, м 10 Настройка фокуса присутствует Габаритные размеры, мм 22x65 Срок наработки на отказ, ч более 8000 Производитель ФТИ-Оптроник
ФТИ-Оптроник
Санкт-Петербург
Произведено в: Санкт-Петербург
Корреляционный течеискатель Искор-210
Корреляционный течеискатель Искор-210
от 395 370 ₽
Предназначен для: – определения корреляционным методом местоположения утечек из трубопроводов; – проведения трассировки подземных коммуникаций; – уточнения места утечки акустическим течеискателем; – создания информационной базы данных состояния трубопроводов и результатов диагностики трубопроводов; – поиска места повреждения силового кабеля индукционным и акустическим методами.
ТЕХНО-АС
Коломна
Произведено в: Коломна, Московская область
ШЭРА-РЗТ-1205
ШЭРА-РЗТ-1205
Шкаф резервных защит трансформатора ШЭРА-РЗТ-1205 Исполнение: двустороннее обслуживание установка в помещении напольная установка Функции комплекта БПВА.468263.213 Комплект БПВА.468263.213 построен на базе устройства «Сириус-УВ-02» Основные функции Двухступенчатая дифференциальная токовая защита двухобмоточного трансформатора (токовая отсечка и защита с торможением от сквозного тока и отстройкой от бросков тока намагничивания). Контроль небаланса в плечах дифференциальной токовой защиты с действием на сигнализацию. Входы отключения от газовой защиты трансформатора и РПН. Направленная трехступенчатая МТЗ высшей стороны трансформатора с возможностью комбинированного пуска по напряжению от стороны низшего напряжения (по дискретному входу). Ненаправленая трехступенчатая МТЗ низшей стороны трансформатора с возможностью комбинированного пуска по напряжению от стороны низшего напряжения (по дискретному входу). Трехступенчатая защита от перегрузки с действием на сигнализацию (ЗП). Контроль цепей переменного напряжения Внутренний пуск по напряжению Защита от обрыва фаз (ЗОФ). Токовые защиты нулевой последовательности (ТЗНП). Логическая защита трансформатора. Логическая зашита шин (ЛЗШ). Защита от неполнофазного режима (ЗНФР). Защита минимального напряжения (ЗМН). Защита от потери охлаждения (ЗПО). Автоматика пуска пожаротушения. Логика устройства резервирования при отказе выключателя стороны ВН (УРОВ ВН). Управление схемой обдува. Выдача сигнала блокировки РПН при повышении тока нагрузки выше допустимого. Контроль состояния трансформатора по ряду входных дискретных сигналов.
Произведено в: Москва, Зеленоград
Инерциальная навигационная система - ГКВ-7
Инерциальная навигационная система - ГКВ-7
Измеряет инерциальные воздействия, вычисляет ориентацию и навигацию. Модуль обладает возможностью подключения двух антенн и выдает курс в статике. Модуль имеет в составе базовую антенну, относительно которой идет вычисление координат, в том числе возможно вычисление координат с сантиметровой точностью (при передаче поправок от базовой станции в формате RTCMv3.x). ГКВ-7 – малогабаритный модуль, который определяет свою ориентацию в покое по данным от ГНСС-приемника. Двухантенное решение корректирует курс при малой динамике, когда навигационный алгоритм имеет сравнительно большую ошибку и методы коррекции в покое невозможно использовать, например, зависание БПЛА.
Произведено в: Москва, Зеленоград
ИСТИРАТЕЛЬ ДИСКОВЫЙ ИД 65
ИСТИРАТЕЛЬ ДИСКОВЫЙ ИД 65
от 384 000 ₽
Истиратели дисковые предназначены для измельчения проб сыпучих материалов до тонкодисперсного состояния. В истирателях дисковых измельчение происходит за счет истирания – одновременной деформации сжатия и сдвига частиц материала между неподвижным и подвижным дисками. Крупность измельченного продукта регулируется величиной зазора между дисками (щели) и физическими свойствами материала.
ВИБРОТЕХНИК
Санкт-Петербург
Произведено в: Санкт-Петербург
Инерциальная навигационная система - ГКВ-11
Инерциальная навигационная система - ГКВ-11
Измеряет инерциальные воздействия, вычисляет ориентацию и навигацию. Встроенные навигационные алгоритмы позволяют использовать модуль в системах стабилизации и мониторинга пространственной ориентации объектов, вычислять истинный курс и координаты, даже при пропадании сигналов от ГНСС-приемника. Модуль способен решать навигационные задачи с сантиметровой точностью (при подключении коррекции от базовых станций) в режиме реального времени (RTK) и обеспечивать автономную работу при временном пропадании сигналов ГНСС-приемника. ГКВ-11 может использоваться в системах управления беспилотными транспортными средствами, системах лазерного сканирования, системах стабилизации и ориентации объектов. Модули калибруются во всем диапазоне рабочих температур.
Произведено в: Москва, Зеленоград
Скоба регул. СР 180-190
Скоба регул. СР 180-190
от 53 434 ₽
Скобы предназначены для измерений линейных наружных размеров прецизионных деталей.
Произведено в: Челябинск
Преобразователь МАГ-6-Д (CH4, O2)
Преобразователь МАГ-6-Д (CH4, O2)
от 41 800 ₽
Диапазон измерения объемной доли диоксида углерода — вариант 1, % от 0,0 до 1,0 Диапазон измерения объемной доли диоксида углерода — вариант 2, % от 0,0 до 10,0 Диапазон измерения объемной доли кислорода — вариант 1, % от 0,0 до 30,0 Диапазон измерения объемной доли кислорода — вариант 2, % от 0,0 до 100,0 Диапазон измерения объемной доли метана, % от 0,0 до 5,0 Диапазон измерения массовой концентрации монооксида углерода, мг/м3: от 0 до 500 Диапазон измерения массовой концентрации аммиака, мг/м3 от 0 до 70 Диапазон измерения массовой концентрации сероводорода, мг/м3 от 0 до 140 Диапазон измерения массовой концентрации диоксида серы, мг/м3 от 0 до 50 Диапазон измерения массовой концентрации диоксида азота, мг/м3 от 0 до 20 Пределы основной погрешности измерения объемной доли диоксида углерода, %, где Свх – объемная доля диоксида углерода на входе газоанализатора — от 0,0 до 1,0 %, % ±(0,02+0,05·Cвх) Пределы основной погрешности измерения объемной доли диоксида углерода, %, где Свх – объемная доля диоксида углерода на входе газоанализатора — от 0,0 до 10,0 %, % ±(0,1+0,05·Cвх) Пределы основной погрешности измерения объемной доли кислорода — от 0,0 до 30,0 %, % ±0,4 Пределы основной погрешности измерения объемной доли кислорода — от 0,0 до 100 %, % ±1,0 Пределы основной погрешности измерения объемной доли метана — от 0,0 до 2,0 %, % ±0,2 Пределы основной погрешности измерения объемной доли метана — Св. 2,0 до 5,0 %, % ±10 Пределы основной погрешности измерения массовой концентрации монооксида углерода — от 0,0 до 20 мг/м3, мг/м3 ±4 Пределы основной погрешности измерения массовой концентрации монооксида углерода — Св. 20 до 500 мг/м3, % ±20 Пределы основной погрешности измерения массовой концентрации аммиака — от 0,0 до 20 мг/м3, мг/м3 ±4 Пределы основной погрешности измерения массовой концентрации аммиака — Св. 20 до 70 мг/м3, % ±20 Пределы основной погрешности измерения массовой концентрации сероводорода — от 0,0 до 10 мг/м3, мг/м3 ±2 Пределы основной погрешности измерения массовой концентрации сероводорода — Св. 10 до 140 мг/м3, % ±20 Пределы основной погрешности измерения массовой концентрации диоксида серы — от 0,0 до 10 мг/м3, мг/м3 ±2 Пределы основной погрешности измерения массовой концентрации диоксида серы — Св. 10 до 50 мг/м3, % ±25 Пределы основной погрешности измерения массовой концентрации диоксида азота — от 0,0 до 2 мг/м3, мг/м3 ±0,5 Пределы основной погрешности измерения массовой концентрации диоксида азота — Св. 2 до 20 мг/м3, % ±25 Пределы допускаемой дополнительной погрешности газоанализатора от изменения температуры окружающей и анализируемой сред на каждые 10°С от условий, при которых проводилось определение основной погрешности, в долях от пределов допускаемой основной погрешности — кислород 1 Пределы допускаемой дополнительной погрешности газоанализатора от изменения температуры окружающей и анализируемой сред на каждые 10°С от условий, при которых проводилось определение основной погрешности, в долях от пределов допускаемой основной погрешности — монооксид углерода, диоксид углерода, аммиак, сероводород, диоксид серы, диоксид азота 0,5 Пределы допускаемой дополнительной погрешности газоанализатора от изменения температуры окружающей и анализируемой сред на каждые 10°С от условий, при которых проводилось определение основной погрешности, в долях от пределов допускаемой основной погрешности — метан 0,2 Пределы допускаемой дополнительной погрешности газоанализатора от изменения давления окружающей и анализируемой сред на каждые 3,3 кПа от условий, при которых проводилось определение основной погрешности, в долях от пределов допускаемой основной погрешности — кислород, диоксид углерода, метан 0,7 Пределы допускаемой дополнительной погрешности газоанализатора от изменения давления окружающей и анализируемой сред на каждые 3,3 кПа от условий, при которых проводилось определение основной погрешности, в долях от пределов допускаемой основной погрешности — монооксид углерода, аммиак, сероводород, диоксид серы, диоксид азота 0,2 Номинальное время установления показаний Т0,9ном, с — кислород, монооксид углерода, диоксид углерода, метан 30 Номинальное время установления показаний Т0,9ном, с — аммиак, сероводород, диоксид серы, диоксид азота 60 Рекомендуемый расход анализируемого газа, л/мин 0,1-0,5 Время прогрева газоанализатора, мин, не более 5 Рабочие условия прибора — температура воздуха, °С от -20 до +40 Рабочие условия прибора — относительная влажность, % (без конденсации влаги) от 10 до 95 Рабочие условия прибора — атмосферное давление, кПа от 84 до 106 Количество точек автоматической статистики нет Время непрерывной работы газоанализатора от полностью заряженных аккумуляторов, ч, не менее нет Напряжение питания, В от 4 до 6 (от 7 до 28 без взрывозащиты) Потребляемая прибором мощность, Вт, не более 1 Интерфейс связи с компьютером нет Длина линии связи USB, м, не более нет Масса прибора, кг, не более 0,4 Габаритные размеры прибора, мм, не более 130х90х35 Средний срок службы, лет 5 Средняя наработка на отказ, ч (без учета срока службы сенсоров) 8000
ЭКСИС
город Зеленоград
Произведено в: Москва, Зеленоград
Уплотнение магнитожидкостное APR-SE-COAX 12/15-48/34
Уплотнение магнитожидкостное APR-SE-COAX 12/15-48/34
Коаксиальный двухвальный ввод вращения (выполнен по соосной схеме). Разработан под конструктив транспортной системы заказчика и обеспечивает передачу вращательных движений от приводов к загрузчику вакуумной камеры, тем самым обеспечивая радиальное и прямолинейное перемещение манипулятора при транспортировке кремниевых пластин из шлюза в технологический модуль. Применим в кластерных установках. Характеристики МЖУ: -диаметр центрального вала (атмосфера/вакуум): 12/15мм; -диаметр радиального вала (атмосфера/вакуум): 48/34мм; -предельное давление в технологическом и шлюзовом модулях: 1*10-6Па; -угловая скорость вращения центрального и радиального валов 20 об/сек; -натекание по гелию не более 10-12 м3Па/с.
Аперон
Зеленоград
Произведено в: Москва, Зеленоград
Щ23.8 Амперметры и вольтметры постоянного тока для АЭС
Щ23.8 Амперметры и вольтметры постоянного тока для АЭС
Приборы щитовые цифровые электроизмерительные Щ23.8 предназначены для измерения силы тока или напряжения в цепях постоянного тока для работы в составе технических средств атомных электростанций, а также в других отраслях промышленности.
Произведено в: Чебоксары
Безнапорный гибридный расходомер-счетчик Волга Тритон
Безнапорный гибридный расходомер-счетчик Волга Тритон
от 300 000 ₽
Безнапорный гибридный расходомер-счетчик Волга Тритон предназначен для измерения объемного расхода жидкости в водоводах с безнапорным и комбинированным напорно-безнапорным режимом течения. Погружной первичный преобразователь скорости работает на основе эффекта Доплера, излучая навстречу потоку ультразвуковой сигнал и принимая отраженное от частиц в потоке эхо с частотой, отличной от частоты испускаемого сигнала. Это смещение частоты называется «Доплеровское смещение» и оно пропорционально скорости потока. В качестве измерителя глубины может использоваться бесконтактный ультразвуковой первичный преобразователь ВБН-ДГ-01 или любой другой преобразователь уровня жидкости стороннего производителя имеющий унифицированный токовый выход 4-20 мА: радарный, гидростатический или ультразвуковой. Определение объемного расхода происходит как по методу «площадь-скорость», так и по МИ2220-2013 в зависимости от гидравлических условий. В бесконтактном (радарном) режиме расходомер Волга Тритон предназначен для измерения объемного расхода жидкости при безнапорном режиме течения. Расходомер может применяться в составе узлов учета сточных вод в безнапорных (самотечных) канализационных системах, открытых ирригационных и мелиоративных каналах, открытых или подземных деривационных безнапорных водоводах объектов гидроэнергетики, отводящих подводящих и рециркуляционных водоводах теплоэнергетики и других гидротехнических сооружениях с безнапорным режимом течения. В основе технологии измерения лежит бесконтактный радарный метод измерения поверхностной скорости потока и бесконтактный ультразвуковой/радарный метод измерения уровня воды. В качестве измерителя уровня воды может использоваться как собственный ультразвуковой датчик уровня ВР-Г-01, так и датчики сторонних производителей, подключаемые по унифицированным цифровым или аналоговым интерфейсам, например, VEGAPLUS. Безнапорный гибридный расходомер-счетчик "Волга Тритон" стал лауреатом Международной экологической премии EWA Award 2021 в номинации Лучшая технология. Вторичный преобразователь Доступен как в стационарном (~220 В), так и в портативном варианте с автономным электропитанием. Первичные преобразователи ВБН-ДС-01 Первичный преобразователь скорости для средних и крупных водоводов ВБН-ДС-02 Комбинированный первичный преобразователь скорости и глубины для средних и малых водоводов ВБН-ДС-03 Комбинированный низкопрофильный первичный преобразователь скорости и глубины для малых водоводов. ВБН-ДГ-01 - бесконтактный ультразвуковой первичный преобразователь - измеритель глубины Типоразмеры труб Ду, мм: 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, до 6000 мм.
Произведено в: Москва
Константа ВЗП-4. Погружной вискозиметр
Константа ВЗП-4. Погружной вискозиметр
от 16 740 ₽
Приближенное определение условной вязкости лакокрасочных материалов и относящихся к ним продуктов (ньютоновских или приближающихся к ним жидкостей) при оперативном контроле в цеховых условиях и на рабочих местах. Устройство: Вискозиметр представляет собой выполненный из алюминиевого сплава резервуар цилиндрической формы, переходящий внизу в полый конус со съемным соплом из нержавеющей стали. К резервуару прикреплена ручка для удобства работы. Методика контроля: Держа вискозиметр за ручку, погрузить его в испытуемую жидкость, затем быстро поднять воронку из жидкости и в тот же момент времени включить секундомер. Остановить секундомер в момент первого прерывания струи и отсчитать время. За условную вязкость лакокрасочных материалов принимают время непрерывного истечения в секундах определенного объема испытуемого материала через калиброванное сопло вискозиметра. Кинематическая вязкость определяется по эмпирическим формулам либо по графикам и таблицам в зависимости от времени истечения.
КОНСТАНТА
Санкт-Петербург
Произведено в: Санкт-Петербург